

Trigonometric Identities

Main Ideas

- Use identities to find trigonometric values.
- Use trigonometric identities to simplify expressions.

New Vocabulary

trigonometric identity

GET READY for the Lesson

A model for the height of a baseball after it is hit as a function of time can be determined using trigonometry. If the ball is hit with an initial velocity of v feet per second at an angle of θ from the horizontal, then the height hof the ball after t seconds can be represented by

$$h = \left(\frac{-16}{v^2 \cos^2 \theta}\right) t^2 + \left(\frac{\sin \theta}{\cos \theta}\right) t + h_{0'}$$

where h_0 is the height of the ball in feet the moment it is hit.

Find Trigonometric Values In the equation above, the second term $\left(\frac{\sin \theta}{\cos \theta}\right)t$ can also be written as $(\tan \theta)t$. $\left(\frac{\sin \theta}{\cos \theta}\right)t = (\tan \theta)t$ is an example of

a trigonometric identity. A **trigonometric identity** is an equation involving trigonometric functions that is true for all values for which every expression in the equation is defined.

The identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$ is true except for angle measures such as 90°, 270°, 450°, ..., 90° + 180° · *k*. The cosine of each of these angle measures is 0, so none of the expressions $\tan 90^\circ$, $\tan 270^\circ$, $\tan 450^\circ$, and so on, are defined. An identity similar to this is $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

These identities are sometimes called *quotient identities*. These and other basic trigonometric identities are listed below.

KEY CONCEPT		Basic Trigon	ometric Identities
Quotient Identities	$\tan \theta = \frac{\sin \theta}{\cos \theta}, \ \cos \theta$	$\theta \neq 0$ cot $\theta = \frac{c}{s}$	$\frac{\cos \theta}{\sin \theta}$, sin $\theta \neq 0$
Reciprocal Identities	$\csc \theta = \frac{1}{\sin \theta}$ $\sin \theta \neq 0$	$\sec \theta = \frac{1}{\cos \theta}$ $\cos \theta \neq 0$	$\cot \theta = \frac{1}{\tan \theta}$ $\tan \theta \neq 0$
Pythagorean Identities	$\cos^2 \theta + \sin^2 \theta = 1$ $\cot^2 \theta + 1 = \csc^2 \theta$	$\tan^2\theta + 1 = \sec^2\theta$	

You can use trigonometric identities to find values of trigonometric functions.

EXAMPLE Find a Value of a Trigonometric Function **Q** a. Find $\cos \theta$ if $\sin \theta = -\frac{3}{5}$ and $90^{\circ} < \theta < 180^{\circ}$. $\cos^2\theta + \sin^2\theta = 1$ Trigonometric identity $\cos^2 \theta = 1 - \sin^2 \theta$ Subtract $\sin^2 \theta$ from each side. $\cos^{2} \theta = 1 - \left(\frac{3}{5}\right)^{2}$ Substitute $\frac{3}{5}$ for sin θ . $\cos^{2} \theta = 1 - \frac{9}{25}$ Square $\frac{3}{5}$. $\cos^{2} \theta = \frac{16}{25}$ Subtract. $\cos \theta = \pm \frac{4}{5}$ Take the square root of each side. Since θ is in the second quadrant, $\cos \theta$ is negative. Thus, $\cos \theta = -\frac{4}{5}$. **b.** Find $\csc \theta$ if $\cot \theta = -\frac{1}{4}$ and $270^{\circ} < \theta < 360^{\circ}$. $\cot^2 \theta + 1 = \csc^2 \theta$ Trigonometric identity $\left(-\frac{1}{4}\right)^2 + 1 = \csc^2 \theta$ Substitute $-\frac{1}{4}$ for $\cot \theta$. $\frac{1}{16} + 1 = \csc^2 \theta \quad \text{Square} - \frac{1}{4}.$ $\frac{17}{16} = \csc^2 \theta \quad \text{Add.}$ $\pm \frac{\sqrt{17}}{4} = \csc \theta$ Take the square root of each side. Since θ is in the fourth quadrant, csc θ is negative. Thus, $\csc \theta = -\frac{\sqrt{17}}{4}$. CHECK Your Progress **1A.** Find sin θ if cos $\theta = \frac{1}{3}$ and $270^{\circ} < \theta < 360^{\circ}$. **1B.** Find sec θ if sin $\theta = -\frac{2}{7}$ and $180^{\circ} < \theta < 270^{\circ}$.

SIMPLIFY EXPRESSIONS Trigonometric identities can also be used to simplify expressions containing trigonometric functions. Simplifying an expression that contains trigonometric functions means that the expression is written as a numerical value or in terms of a single trigonometric function, if possible.

Extra Examples at algebra2.com

$$= \frac{\frac{\sin^{2} \theta}{\sin^{2} \theta}}{\cos \theta} \qquad 1 - \cos^{2} \theta = \sin^{2} \theta$$
$$= \frac{1}{\cos \theta} \qquad \frac{\sin^{2} \theta}{\sin^{2} \theta} = 1$$
$$= \sec \theta \qquad \frac{1}{\cos \theta} = \sec \theta$$
Simplify each expression.
2A. $\frac{\tan^{2} \theta \csc^{2} \theta - 1}{\sec^{2} \theta}$ **2B.** $\frac{\sec \theta}{\sin \theta} (1 - \cos^{2} \theta)$

EXAMPLE Simplify and Use an Expression

BASEBALL Refer to the application at the beginning of the lesson. Rewrite the equation in terms of tan θ .

$$h = \left(\frac{-16}{v^2 \cos^2 \theta}\right)t^2 + \left(\frac{\sin \theta}{\cos \theta}\right)t + h_0 \qquad \text{Original equation}$$

$$= -\frac{16}{v^2}\left(\frac{1}{\cos^2 \theta}\right)t^2 + \left(\frac{\sin \theta}{\cos \theta}\right)t + h_0 \qquad \text{Factor.}$$

$$= -\frac{16}{v^2}\left(\frac{1}{\cos^2 \theta}\right)t^2 + (\tan \theta)t + h_0 \qquad \frac{\sin \theta}{\cos \theta} = \tan \theta$$

$$= -\frac{16}{v^2}(\sec^2 \theta)t^2 + (\tan \theta)t + h_0 \qquad \text{Since } \frac{1}{\cos \theta} = \sec \theta, \frac{1}{\cos^2 \theta} = \sec^2 \theta.$$

$$= -\frac{16}{v^2}(1 + \tan^2 \theta)t^2 + (\tan \theta)t + h_0 \qquad \sec^2 \theta = 1 + \tan^2 \theta$$
Thus, $\left(\frac{-16}{v^2 \cos^2 \theta}\right)t^2 + \left(\frac{\sin \theta}{\cos \theta}\right)t + h_0 = -\frac{16}{v^2}(1 + \tan^2 \theta)t^2 + (\tan \theta)t + h_0$

CHECK Your Understanding

Example 1	Find the value of each expression.			
(p. 838)	1. $\tan \theta$, if $\sin \theta = \frac{1}{2}$; $90^\circ \le \theta < 180^\circ$	2. $\csc \theta$, if $\cos \theta = -\frac{3}{5}$; $180^\circ \le \theta < 270^\circ$		
	3. $\cos \theta$, if $\sin \theta = \frac{4}{5}$; $0^{\circ} \le \theta < 90^{\circ}$	4. sec θ , if $\tan \theta = -1$; $270^\circ < \theta < 360^\circ$		
Example 2	Simplify each expression.			
(pp. 838–839)	5. $\csc \theta \cos \theta \tan \theta$	6. $\sec^2 \theta - 1$		
	7. $\frac{\tan\theta}{\sin\theta}$	8. $\sin \theta (1 + \cot^2 \theta)$		

Example 3 (p. 839) **9. PHYSICAL SCIENCE** When a person moves along a circular path, the body leans away from a vertical position. The nonnegative acute angle that the body makes with the vertical is called the *angle of inclination* and is represented by the equation $\tan \theta = \frac{v^2}{gR}$, where *R* is the radius of the circular path, *v* is the speed of the person in meters per second, and *g* is the acceleration due to gravity, 9.8 meters per second squared. Write an equivalent expression using $\sin \theta$ and $\cos \theta$.

Exercises

HOMEWORK HELP				
For Exercises	See Examples			
10–17	1			
18–26	2			
27, 28	3			

Find the value of each expression.

10. tan θ , if $\cot \theta = 2$; $0^{\circ} \le \theta < 90^{\circ}$
12. sec θ , if tan $\theta = -2$; 90° < θ < 180°
14. $\csc \theta$, if $\cos \theta = -\frac{3}{5}$; $90^\circ < \theta < 180^\circ$
16. $\cos \theta$, if $\sin \theta = \frac{1}{2}$; $0^{\circ} \le \theta < 90^{\circ}$

Simplify each expression.

18. $\cos\theta \csc\theta$	19. tan $\theta \cot \theta$	20. $\sin \theta \cot \theta$
21. $\cos \theta \tan \theta$	22. $2(\csc^2\theta - \cot^2\theta)$	23. $3(\tan^2 \theta - \sec^2 \theta)$
24. $\frac{\cos\theta\csc\theta}{\tan\theta}$	25. $\frac{\sin\theta\csc\theta}{\cot\theta}$	$26. \ \frac{1-\cos^2\theta}{\sin^2\theta}$

11. sin θ , if cos $\theta = \frac{2}{3}$; $0^{\circ} \le \theta < 90^{\circ}$

13. tan θ , if sec $\theta = -3$; $180^{\circ} < \theta < 270^{\circ}$

15. $\cos \theta$, if $\sec \theta = \frac{5}{3}$; $270^{\circ} < \theta < 360^{\circ}$ **17.** $\csc \theta$, if $\cos \theta = -\frac{2}{3}$; $180^{\circ} < \theta < 270^{\circ}$

ELECTRONICS For Exercises 27 and 28, use the following information.

When an alternating current of frequency *f* and a peak current *I* pass through a resistance *R*, then the power delivered to the resistance at time *t* seconds is $P = I^2 R - I^2 R \cos^2 2ft\pi$.

27. Write an expression for the power in terms of $\sin^2 2ft\pi$.

28. Write an expression for the power in terms of $\tan^2 2ft\pi$.

Find the value of each expression.

29. $\tan \theta$, if $\cos \theta = \frac{4}{5}$; $0^{\circ} \le \theta < 90^{\circ}$ **30.** $\cos \theta$, if $\csc \theta = -\frac{5}{3}$; $270^{\circ} < \theta < 360^{\circ}$ **31.** $\sec \theta$, if $\sin \theta = \frac{3}{4}$; $90^{\circ} < \theta < 180^{\circ}$ **32.** $\sin \theta$, if $\tan \theta = 4$; $180^{\circ} < \theta < 270^{\circ}$

Simplify each expression.

33.
$$\frac{1-\sin^2\theta}{\sin^2\theta}$$
34.
$$\frac{\sin^2\theta+\cos^2\theta}{\sin^2\theta}$$
35.
$$\frac{\tan^2\theta-\sin^2\theta}{\tan^2\theta\sin^2\theta}$$

AMUSEMENT PARKS For Exercises 36–38, use the following information.

Suppose a child is riding on a merry-go-round and is seated on an outside horse. The diameter of the merry-go-round is 16 meters.

- **36.** Refer to Exercise 9. If the sine of the angle of inclination of the child is $\frac{1}{5}$, what is the angle of inclination made by the child?
- **37.** What is the velocity of the merry-go-round?
- **38.** If the speed of the merry-go-round is 3.6 meters per second, what is the value of the angle of inclination of a rider?

LIGHTING For Exercises 39 and 40, use the following information.

The amount of light that a source provides to a surface is called the *illuminance*. The illuminance *E* in foot candles on a surface is related to the

distance *R* in feet from the light source. The formula sec $\theta = \frac{I}{FR^2}$, where *I* is

the intensity of the light source measured in candles and θ is the angle between the light beam and a line perpendicular to the surface, can be used in situations in which lighting is important.

39. Solve the formula in terms of *E*.

40. Is the equation in Exercise 39 equivalent to $R^2 = \frac{I \tan \theta \cos \theta}{F}$? Explain.

The oldest operational carousel in the United States is the Flying Horse Carousel at Martha's Vineyard, Massachusetts.

Source: Martha's Vineyard Preservation Trust

- **H.O.T.** Problems. **41. REASONING** Describe how you can determine the quadrant in which the terminal side of angle α lies if sin $\alpha = -\frac{1}{4}$.
 - **42. OPEN ENDED** Write two expressions that are equivalent to $\tan \theta \sin \theta$.
 - **43. REASONING** If $\cot(x) = \cot\left(\frac{\pi}{3}\right)$ and $3\pi < x < 4\pi$, find x.
 - **44.** CHALLENGE If $\tan \beta = \frac{3}{4}$, find $\frac{\sin \beta \sec \beta}{\cot \beta}$.
 - **45.** Writing in Math Use the information on page 837 to explain how trigonometry can be used to model the path of a baseball. Include an explanation of why the equation at the beginning of the lesson is the same as $y = -\frac{16 \sec^2 \theta}{r^2}x^2 + (\tan \theta)x + h_0$.

STANDARDIZED TEST PRACTICE

46. ACT/SAT If sin x = m and $0 < x < 90^{\circ}$, then tan x =**A** $\frac{1}{m^2}$.

Spiral Review

B $\frac{1-m^2}{m}$.

C $\frac{m}{\sqrt{1-m^2}}$.

D $\frac{m}{1-m^2}$.

State the vertical shift, equation of the midline, amplitude, and period for each function. Then graph the function. (Lesson 14-2)

48. $y = \sin \theta - 1$

49. $y = \tan \theta + 12$

Find the amplitude, if it exists, and period of each function. Then graph each function. (Lesson 14-1)

50. $y = \csc 2\theta$ **51.** $y = \cos 3\theta$ **52.** $y = \frac{1}{3} \cot 5\theta$

53. Find the sum of a geometric series for which $a_1 = 48$, $a_n = 3$, and $r = \frac{1}{2}$. (Lesson 11-4)

- **54.** Write an equation of a parabola with focus at (11, -1) and directrix y = 2. (Lesson 10-2)
- **55. TEACHING** Ms. Granger has taught 288 students at this point in her career. If she has 30 students each year from now on, the function S(t) = 288 + 30t gives the number of students S(t) she will have taught after t more years. How many students will she have taught after 7 more years? (Lesson 2-1)

GET READY for the Next Lesson

PREREQUISITE SKILL Name the property illustrated by each statement. (Lesson1-3)

56. If 4 + 8 = 12, then 12 = 4 + 8. **57.** If 7 + s = 21, then s = 14.

58. If 4x = 16, then 12x = 48.

59. If q + (8 + 5) = 32, then q + 13 = 32.